Real-time density-based crowd simulation
نویسندگان
چکیده
Virtual characters in games and simulations often need to plan visually convincing paths through a crowded environment. This paper describes how crowd density information can be used to guide a large number of characters through a crowded environment. Crowd density information helps characters avoid congested routes that could lead to traffic jams. It also encourages characters to use a wide variety of routes to reach their destination. Our technique measures the desirability of a route by combining distance information with crowd density information. We start by building a navigation mesh for the walkable regions in a polygonal two-dimensional (2-D) or multilayered three-dimensional (3-D) environment. The skeleton of this navigation mesh is the medial axis. Each walkable region in the navigation mesh maintains an up-to-date density value. This density value is equal to the area occupied by all the characters inside a given region divided by the total area of this region. These density values are mapped onto the medial axis to form a weighted graph. An A search on this graph yields a backbone path for each character, and forces are used to guide the characters through the weighted environment. The characters periodically replan their routes as the density values are updated. Our experiments show that we can compute congestion-avoiding paths for tens of thousands of characters in real-time. Copyright © 2012 John Wiley & Sons, Ltd.
منابع مشابه
A Data-driven Method for Crowd Simulation using a Holonification Model
In this paper, we present a data-driven method for crowd simulation with holonification model. With this extra module, the accuracy of simulation will increase and it generates more realistic behaviors of agents. First, we show how to use the concept of holon in crowd simulation and how effective it is. For this reason, we use simple rules for holonification. Using real-world data, we model the...
متن کاملRealistic Crowd Simulation with Density-Based Path Planning
Virtual characters in games and simulations often need to plan visually convincing paths through a crowded environment. This paper describes how crowd density information can be used to guide a large number of characters through a crowded environment. Crowd density information helps characters avoid congested routes that could lead to traffic jams. It also encourages characters to use a wide va...
متن کاملParallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model
This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a pe...
متن کاملReal-Time Crowd Simulation: A Review
This paper presents a review of current research in the area of real-time crowd simulation. Crowd simulation has many diverse uses, for example in safety modelling, entertainment software, architecture and urban modelling applications. We describe three main approaches to the problem fluid-based, cellular automata and particle-based, concentrating on the latter. Finally, we describe CrowdSim, a...
متن کاملDensity-based evolutionary framework for crowd model calibration
Crowd modeling and simulation is an important and active research field, with a wide range of applications such as computer games, military training and evacuation modeling. One important issue in crowd modeling is model calibration through parameter tuning, so as to produce desired crowd behaviors. Common methods such as trial-and-error are time consuming and tedious. This paper proposes an ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Visualization and Computer Animation
دوره 23 شماره
صفحات -
تاریخ انتشار 2012